

2023 CET Group Co.

Introduction to Water Foam Technology

Development of Water Foam

Silicone Rubber Foam

Water-foamed Silicone

C Water Foam Technology

High-temperature vulcanization foam

Two-component foam mixture

- First used in the United States and then developed worldwide.
- Made into a high-temperature-resistant product series.

Defects:

- Heat aging
- Deformation
- Cumbersome process
- Pollution

Material+Salt upgrade Three-component chemical foam

Cumbersome Only 3 OEMs in the process, prone world have this to pollution.

Advantages:

- Solved silicone foam fusing defects.
- Improved fusing performance.

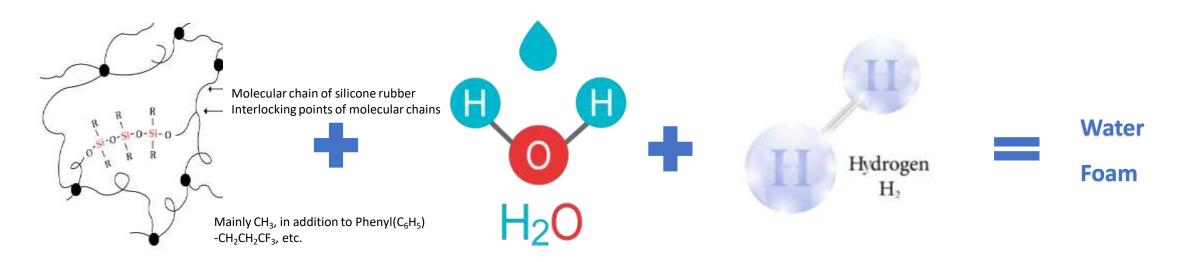
Three-component chemical foam

After 2 years of research and development, CET mastered the manufacturing technology of water foam!

Advantages:

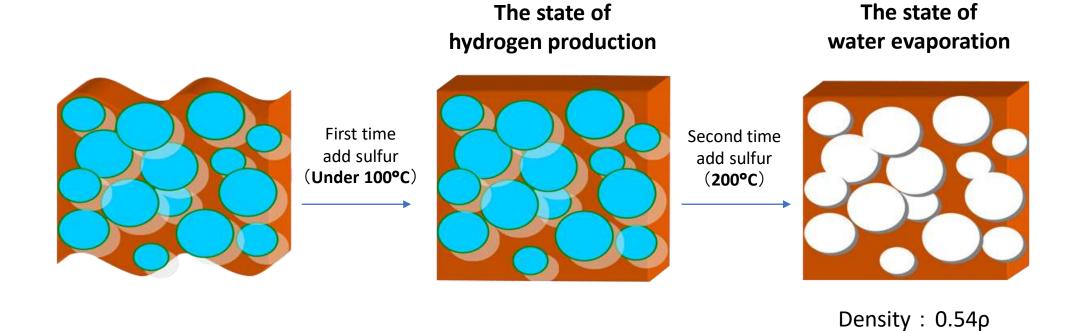
- Solves the silicone foam fusing defects.
- Improves the fusing performance.
- Meets the technology requirements for new OEM machines.

CET Water Foam Test Results:


- Cold start printing within 5 seconds.
- Stable fixing of high-speed color printing.
- High-resolution print quality with perfect images.

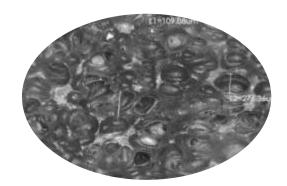
Production Process of Water Foam

Three-component chemical foam

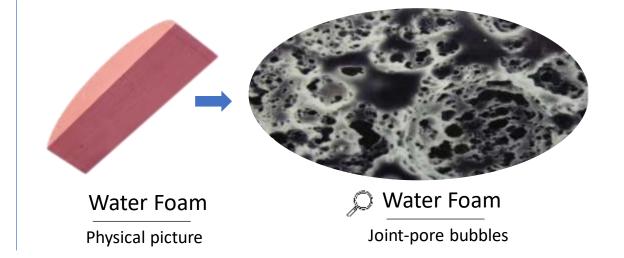


Silicone Water Hydrogen

Production Process of Water Foam


Silicone

Water



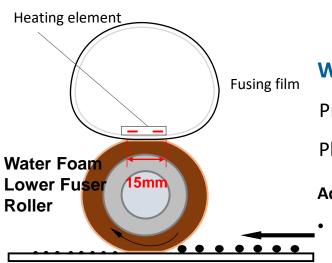
Structure comparison between water & conventional foam

Conventional Foam
Independent pore bubbles

	Structure	Pore diameter	Changes after heating	Energy storage	NIP width	Fusing effect
Water Foam	Joint-pore bubbles	≤0.001cm	The pore size remains uniform	The water foam stores and releases heat effectively	15mm	Excellent
Conventional Foam	Independent pore bubbles		The pore size changed, leading to deformation of the roller core		8mm	Average

Difference In Cores Between Independent And Joint Pore Bubbles After Heating

180°C After 22h



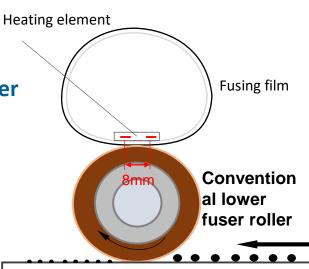
Test Results: Conventional foam core has obvious deformation with heat, while water foam avoids this problem.

Comparison of Water Foam and Ordinary Foam Fixing Shape Variables

Water Foam Lower Fuser Roller

Pressure pliability: 30%

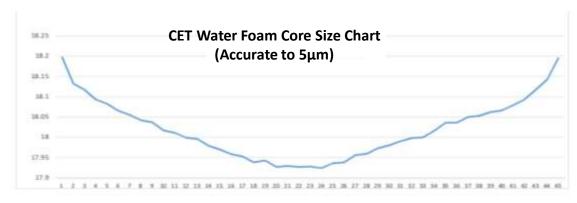
Pliability width: **15mm**

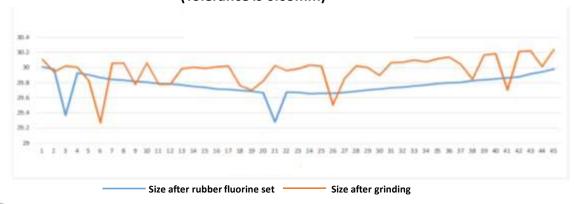

Conventional Lower Fuser Roller

Pressure pliability: 16% - 20%

Pliability width: 8mm

Advantages:


- when tested under the same pressure, the NIP width of the water foam roller is **7mm** wider than the conventional product.
- The water-foam material provides a compression set of over 30%, which is double of conventional product.
- The product has excellent resilience and regains its original shape rapidly.
- Provides significant improvement in fusing performance!



CET Manufacturing Process Controls

Standard Conventional Foam Core Size Chart (Tolerance is 0.03mm)

CET Water Foam Lower Fuser Roller:

- Tolerance of symmetry point of core is within microns.
- Tolerance of left-and-right outer diameter is within 0.03mm.

Standard Conventional Foam Lower Fuser Roller:

- Tolerance of symmetry point of core is within 100 microns.
- Tolerance of left-and-right outer diameter is within 0.3mm.

Conclusion: Advantages of CET Water Foam Technology

Independently developed & manufacturing

CET is the only compatible manufacturer that is able to independently develop and manufacture the water foam product

Stable performance of the roller core

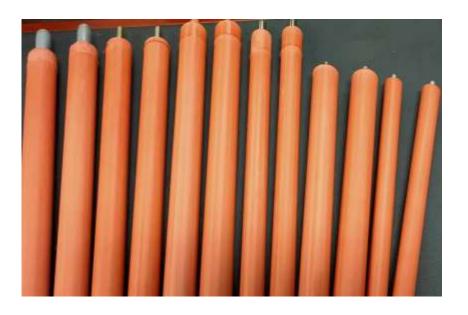
The joint-pore bubbles of the water foam store and release heat effectively to prevent the roller core from deformation after heating

Significant improvement in fusing performance

The NIP width of the water foam roller is 7mm wider than the conventional product, which provides significant improvement in fusing performance

Market trend

OEMs are moving towards this technology for lower rollers in new models


CET Water Foam Products & Development Program

Water foam lower roller developed by CET

CET211001 for use in HP
HP Color LaserJet Pro M452dn/452dw/452nw
MFP M377dw/477fdn/M477fdw/477fnw/
M479dw/479fnw/479fdw

Products under development by CET

For use in RICOH, KM, HP, LEXMARK, CANON

multiple brands and models

CET Water Foam Lower Fuser Roller

Water Foam Lower Fuser Roller

For use in HP Color LaserJet Pro M452dn/452dw/452nw MFP M377dw/477fdn/M477fdw/477fnw/ M479dw/479fnw/479fdw

Product Highlights:

Stable and Consistent Shape

CET's product is cured to achieve a hundred-nanometer joint-pore foaming structure ensuring the roller's **shape remains constant** and stable during use.

Excellent Fixing Effect

The water foam pressure pliability is **double** that of conventional products with **more resilience** to regain its original shape and provide excellent fusing performance.

Extends Fuser Assembly Life

CET's rollers use a unique water foam structure that better stores and releases heat to achieve faster and more consistent operating performance while significantly increasing the product's lifespan.

Lower Fuser Roller

Bringing Innovation to Imaging

Thank You